Abstract
We have measured the temperature dependence of the ClNO2 product yield in competition with hydrolysis following N2O5 uptake to aqueous NaCl solutions. For NaCl-D2O solutions spanning 0.0054-0.21 M, the ClNO2 product yield decreases on average by only 4 ± 3% from 5 to 25 °C. Less reproducible measurements at 0.54-2.4 M NaCl also fall within this range. The ratio of the rate constants for chlorination and hydrolysis of N2O5 in D2O is determined on average to be 1150 ± 90 at 25 °C up to 0.21 M NaCl, favoring chlorination. This ratio is observed to decrease significantly at the two highest concentrations. An Arrhenius analysis reveals that the activation energy for hydrolysis is just 3.0 ± 1.5 kJ/mol larger than for chlorination up to 0.21 M, indicating that Cl- and D2O attack on N2O5 has similar energetic barriers despite the differences in charge and complexity of these reactants. In combination with the measured preexponential ratio favoring chlorination of 300-200+400, we conclude that the strong preference of N2O5 to undergo chlorination over hydrolysis is driven by dynamic and entropic, rather than enthalpic, factors. Molecular dynamics simulations elucidate the distinct solvation between strongly hydrated Cl- and the hydrophobically solvated N2O5. Combining this molecular picture with the Arrhenius analysis implicates the role of water in mediating interactions between such distinctly solvated species and suggests a role for diffusion limitations on the chlorination reaction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.