Abstract

We show that there exist two dimensional (2D) time reversal invariant fractionalized insulators with the property that both their boundary with the vacuum and their boundary with a topological insulator can be fully gapped without breaking time reversal or charge conservation symmetry. This result leads us to an apparent paradox: we consider a geometry in which a disk-like region made up of a topological insulator is surrounded by an annular strip of a fractionalized insulator, which is in turn surrounded by the vacuum. If we gap both boundaries of the strip, we naively obtain an example of a gapped interface between a topological insulator and the vacuum that does not break any symmetries -- an impossibility. The resolution of this paradox is that this system spontaneously breaks time reversal symmetry in an unusual way, which we call \emph{weak symmetry breaking}. In particular, we find that the only order parameters that are sensitive to the symmetry breaking are nonlocal operators that describe quasiparticle tunneling processes between the two edges of the strip; expectation values of local order parameters vanish exponentially in the limit of a wide strip. Also, we find that the symmetry breaking in our system comes with a ground state degeneracy, but this ground state degeneracy is topologically protected, rather than symmetry protected. We show that this kind of symmetry breaking can also occur at the edge of 2D fractional topological insulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call