Abstract
In this work, we introduce a notion of dissipative weak solution for a system describing the evolution of a heat-conducting incompressible non-Newtonian fluid. This concept of solution is based on the balance of entropy instead of the balance of energy and has the advantage that it admits a weak–strong uniqueness principle, justifying the proposed formulation. We provide a proof of existence of solutions based on finite element approximations, thus obtaining the first convergence result of a numerical scheme for the full evolutionary system including temperature dependent coefficients and viscous dissipation terms. Then we proceed to prove the weak–strong uniqueness property of the system by means of a relative energy inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.