Abstract

Electrolytes play an important role in transporting metal ions (e.g., Li+) in metal ion batteries, while understanding the relationship between the electrolyte properties and behaviors is still challenging. Herein, we detect the existence of weak solvent–solvent interactions in electrolytes by nuclear magnetic resonance (NMR), particularly discovering that such interactions have a significant function of stabilizing the electrolytes, which has never been reported before. As a paradigm, we renovated the understanding of the role of ethylene carbonate (EC) solvent in the lithium-ion battery electrolyte. We find that the EC solvent can stabilize the linear carbonate solvent electrolyte, particularly the diethyl carbonate (DEC) electrolyte, by the weak intermolecular interactions, enhancing the energy difference between the orbitals of the Li+(EC)x(DEC)y complex, in turn demonstrating strong capability against reduction. Our viewpoint was further demonstrated in other metal ion batteries (e.g., Na+, K+), whose discovery is significant for designing electrolytes and in-depth understanding of the battery performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.