Abstract

We are concerned with the Cahn-Hilliard/Navier-Stokes equations for the stationary compressible flows in a three-dimensional bounded domain. The governing equations consist of the stationary Navier-Stokes equations describing the compressible fluid flows and the stationary Cahn-Hilliard type diffuse equation for the mass concentration difference. We prove the existence of weak solutions when the adiabatic exponent $\gamma$ satisfies $\gamma>\frac{4}{3}$. The proof is based on the weighted total energy estimates and the new techniques developed to overcome the difficulties from the capillary stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.