Abstract

In this paper, we deal with the Navier–Stokes equations with the time-fractional derivative of order α∈(0,1), which can be used to simulate anomalous diffusion in fractal media. We firstly give the concept of the weak solutions and establish the existence criterion of weak solutions by means of Galerkin approximations in the case that the dimension n≤4. Moreover, a complete proof of the uniqueness is given when n=2. At last we give a sufficient condition of optimal control pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.