Abstract

A weak solution of the conservation law ut+j(ux)=0 is a locally Lipschitzian function u which satisfies the equation almost everywhere. We treat a boundary value problem and also a mixed initial-boundary value problem associated with the equation where the initial and boundary data are convex functions. The convexity hypothesis makes it possible to apply the Fenchel theory of conjugate convex functions to the problem. This leads to a construction of solutions rather than to a proof of their existence; the solutions so constructed turn out to be stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.