Abstract

We study the nonlinear Neumann boundary value problem with a $p(x)$-Laplacian operator \[ \begin{cases} \Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = f(x,u) &\textrm{in $\Omega$}, |\nabla u|^{p(x)-2} \dfrac{\partial u}{\partial\nu} = |u|^{q(x)-2}u + \lambda |u|^{w(x)-2}u &\textrm{on $\partial \Omega$}, \end{cases} \] where $\Omega \subset \mathbb{R}^N$, with $N \geq 2$, is a bounded domain with smooth boundary and $q(x)$ is critical in the context of variable exponent $p_*(x) = (N-1)p(x)/(N-p(x))$. Using the variational method and a version of the concentration-compactness principle for the Sobolev trace immersion with variable exponents, we establish the existence and multiplicity of weak solutions for the above problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.