Abstract

Self-similarity is a common tendency in nature and physics. It is wide spread in geo-physical phenomena like diffusion and iteration. Physically, an object is self-similar if it is invariant under a set of scaling transformation. This paper gives a brief outline of the analytical and set theoretical properties of different types of weak self-similar sets. It is proved that weak sub self-similar sets are closed under finite union. Weak sub self-similar property of the topological boundary of a weak self-similar set is also discussed. The denseness of non-weak super self-similar sets in the set of all non-empty compact subsets of a separable complete metric space is established. It is proved that the power of weak self-similar sets are weak super self-similar in the product metric and weak self-similarity is preserved under isometry. A characterization of weak super self-similar sets using weak sub contractions is also presented. Exact weak sub and super self-similar sets are introduced in this paper and some necessary and sufficient conditions in terms of weak condensation IFS are presented. A condition for a set to be both exact weak super and sub self-similar is obtained and the denseness of exact weak super self similar sets in the set of all weak self-similar sets is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.