Abstract

A new explicit stochastic Runge–Kutta scheme of weak order 2 is proposed for non-commutative stochastic differential equations (SDEs), which is derivative-free and which attains order 4 for ordinary differential equations. The scheme is directly applicable to Stratonovich SDEs and uses 2 m - 1 random variables for one step in the m-dimensional Wiener process case. It is compared with other derivative-free and weak second-order schemes in numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.