Abstract

Response of the Atlantic thermohaline circulation (THC) to global warming is examined by using the climate system model developed at IAP/LASG The evidence indicates that the gradually warming climate associated with the increased atmospheric carbon dioxide leads to a warmer and fresher sea surface water at the high latitudes of the North Atlantic Ocean, which prevents the down-welling of the surface water. The succedent reduction of the pole-toequator meridional potential density gradient finally results in the decrease of the THC in intensity. When the atmospheric carbon dioxide is doubled, the maximum value of the Atlantic THC decreases approximately by 8%. The associated poleward oceanic heat transport also becomes weaker. This kind of THC weakening centralizes mainly in the northern part of the North Atlantic basin, indicating briefly a local scale adjustment rather than a loop oscillation with the whole Atlantic “conveyor belt” decelerating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.