Abstract

In this art cle I give the de .n t on of the strong and weak re .ex v ty and the com- pat bility relation of objects in a categorical language.These concepts will generalize the corresponding concepts n the theory of topolog cal vector spaces. The main theorem makes clear the connection between these mportant concepts and we can show a lot of objects in our category,which are not strongly re .exive,but compatible with strongly re .ex ve objects.We also consider a lot of interesting examples and try to throw new light upon the ex stence of such Abelian groups which satisfy Pontryagin duality but do not respect compactness.We w ll prove also that the weak topolog cal vector space- structures are not re .ex ve in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.