Abstract

The ideal quantum key distribution (QKD) protocol requires perfect random numbers for bit encoding and basis selecting. Perfect randomness is of great significance to the practical QKD system. However, due to the imperfection of practical quantum devices, an eavesdropper (Eve) may acquire some random numbers, thus affecting the security of practical systems. In this paper, we analyze the effects of the weak randomness in the measurement-device-independent QKD (MDI-QKD) with finite resources. We analytically derive concise formulas for estimating the lower bound of the single-photon yield and the upper bound of the phase error rate in the case of the weak randomness. The simulation demonstrates that the final secret key rate of MDI-QKD with finite resources is sensitive to state preparation, even with a small proportion of weak randomness, the secure key rate has a noticeable fluctuation. Therefore, the weak randomness of the state preparation may bring additional security risks. In order to ensure the practical security of the QKD system, we are supposed to strengthen the protection of state preparation devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.