Abstract
Since a frame for a Hilbert space must be a Bessel sequence, many results on (quasi-)affine bi-frame are established under the premise that the corresponding (quasi-)affine systems are Bessel sequences. However, it is very technical to construct a (quasi-)affine Bessel sequence. Motivated by this observation, in this paper we introduce the notion of weak (quasi-)affine bi-frame (W(Q)ABF) in a general reducing subspace for which the Bessel sequence hypothesis is not needed. We obtain a characterization of WABF, and prove the equivalence between WABF and WQABF under a mild condition. This characterization is used to recover some related known results in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.