Abstract

The concept of "partition relation" has proven to be extremely important in the development of the theory of large cardinals. This is due in good part to the fact that the ordinal numbers which appear as parameters in partition relations provide a natural way to define a detailed hierarchy of the corresponding large cardinal axioms. In particular, the study of cardinals satisfying Ramsey-Erdös-style partition relations has yielded a great number of very interesting large cardinal axioms which lie in strength strictly between inaccessibility and measurability. It is the purpose of this paper to show that this phenomenon does not occur if we use infinite exponent partition relations; no such partition relation has consistency strength strictly between inaccessibility and measurability. We also give a complete determination of which infinite exponent partition relations hold, assuming that there is no inner model of set theory with a measurable cardinal.Our notation is standard. If F is a function and x is a set, then F″x denotes the range of F on x. If X is a set of ordinals and α is an ordinal, then [X]α is the collection of all subsets of X of order type α. We identify a member of [X]α with a strictly increasing function from α to X. If p ∈ [X]α and q ∈ [α]β, then the composition of p with q, which we denote pq, is a member of [X]β.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call