Abstract

We study the temperature dependence of the upper critical magnetic field Hc2 in a layered iron-based superconducting (IBS) material of the 11-family, namely the Fe(Se,Te) thin film grown on CaF2 substrate. On the basis of intrinsic anisotropy as well as system dimensionality, it turns useful to make a comparison with an ultrathin film conventional low temperature superconductors (LTS) such as NbN, mostly used for device applications. We compare the anisotropy factors as a function of temperature and magnetic field. Both materials present a peculiar behavior: The LTS behaves as a strong anisotropic system, whereas the IBS shows very weak anisotropic features. The strong NbN character can be directly ascribed to the dimensionality of the ultrathin film employed, thus revealing a geometry effect. The weak Fe(Se,Te) trend should be related to its layered crystallographic structure, thus probing an intrinsic origin of its anisotropy. These characteristics become relevant for the potential application of this material in coated conductor technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call