Abstract

The 50th anniversary of Biopolymers coincides closely with the like celebration of the discovery of the Escherichia coli (lac) lactose operon, a classic genetic system long used to illustrate the influence of biomolecular structure on function. The looping of DNA induced by the binding of the Lac repressor protein to sequentially distant operator sites on DNA continues to serve as a paradigm for understanding long-range genomic communication. Advances in analyses of DNA structures and in incorporation of proteins in computer simulations of DNA looping allow us to address long-standing questions about the role of protein-mediated DNA loop formation in transcriptional control. Here we report insights gained from studies of the sequence-dependent contributions of the natural lac operators to Lac repressor-mediated DNA looping. Novel superposition of the ensembles of protein-bound operator structures derived from NMR measurements reveals variations in DNA folding missed in conventional structural alignments. The changes in folding affect the predicted ease with which the repressor induces loop formation and the ways that DNA closes between the protein headpieces. The peeling of the auxiliary operators away from the repressor enhances the formation of loops with the 92-bp wildtype spacing and hints of a structural reason behind their weak binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.