Abstract

We investigate and solve the weak noise theory for the semidiscrete O'Connell-Yor directed polymer. In the large deviation regime, the most probable evolution of the partition function obeys a classical nonlinear system which is a nonstandard discretization of the nonlinear Schrödinger equationwith mixed initial-final conditions. We show that this system is integrable and find its general solution through an inverse scattering method and a non-standard Fredholm determinant framework that we develop. This allows us to obtain the large deviation rate function of the free energy of the polymer model from its conserved quantities and to study its convergence to the large deviations of the Kardar-Parisi-Zhang equation. Our model also degenerates to the classical Toda chain, which further substantiates the applicability of our Fredholm framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.