Abstract
Abstract Let A and B be Banach 𝔄-bimodule and Banach 𝔅-bimodule algebras, respectively. Also let M be a Banach A, B-module and Banach 𝔄, 𝔅-module with compatible actions. In the case of 𝔄 = 𝔅, the author along with Pourabbas [5] have studied the weak 𝔄-module amenability of triangular Banach algebra T = A M B $\begin{array}{} \displaystyle \mathcal{T}=\left[\begin{array}{rr} A & M \\ & B \end{array} \right] \end{array}$ and showed that 𝓣 is weakly 𝔄-module amenable if and only if the corner Banach algebras A and B are weakly 𝔄-module amenable, where A, B and M are unital. In this paper we investigate a special structure of 𝔄 ⊕ 𝔅-bimodule derivation from 𝓣 into 𝓣∗ and show that 𝓣 is weakly 𝔄 ⊕ 𝔅-bimodule amenable if and only if the corner Banach algebras A and B are weakly 𝔄-module amenable and weakly 𝔅-module amenable, respectively, where A, B and M are essential and not necessary unital.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.