Abstract

This paper is concerned with the modified function projective synchronization of Cohen–Grossberg neural networks systems with parameter mismatch and mixed time-varying delays. Due to the existence of parameter mismatch between the drive and slave systems, complete modified function projective synchronization is not possible to achieve. So a new concept, viz., weak modified function projective synchronization, is discussed up to a small error bound. Several generic criteria are derived to show weak modified function projective synchronization between the systems. The estimation of error bound is done using matrix measure and Halanay inequality. Simulation results are proposed graphically for different particular cases to show the synchronization between parameter-mismatched systems, which validate the effectiveness of our proposed theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.