Abstract

Let $d >1$. In this paper we show that for an irreducible permutation $\pi$ which is not a rotation, the set of $[\lambda]\in \mathbb{P}_+^{d-1}$ such that the interval exchange transformation $f([\lambda],\pi)$ is not weakly mixing does not have full Hausdorff dimension. We also obtain an analogous statement for translation flows. In particular, it strengthens the result of almost sure weak mixing proved by G. Forni and the first author. We adapt here the probabilistic argument developed in their paper in order to get some large deviation results. We then show how the latter can be converted into estimates on the Hausdorff dimension of the set of bad parameters in the context of fast decaying cocycles, following a strategy developed by V. Delecroix and the first author.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.