Abstract

The growth of weak MHD discontinuities have been studied in a radiation induced flow field at very high temperature. Growth and decay properties of weak MHD discontinuities have been discussed under the influences of time-dependent gasdynamic field, the radiation field and the magnetic field with finite electrical conductivity. The effects of thermal radiation and conduction of the global behaviour of weak MHD discontinuities have been studied under a quasi-equilibrium and quasi-isotropic hypothesis of the differential approximation to the radiative heat transfer equation. It is shown that the existence of the time-dependent radiation field gives rise to a radiation induced wave which has a negligibly small effect on the non-relativistic flow properties of the gasdynamic field. It is also shown that the radiation stresses resist the steepening tendency of a compressive weak wave and help in stabilizing it whereas the thermal conduction effects counteracts to destabilize it. It is found that under radiation effects the shock formation is either disallowed or delayed. The two cases of diverging waves and converging waves have been studied separately to answer a particular question as to when a shock discontinuity or a coustic will be formed or disallowed under curvature effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.