Abstract
Metacirculants are a basic and well-studied family of vertex-transitive graphs, and weak metacirculants are generalizations of them. A graph is called a weak metacirculant if it has a vertex-transitive metacyclic automorphism group. This paper is devoted to the study of weak metacirculants with odd prime power order. We first prove that a weak metacirculant of odd prime power order is a metacirculant if and only if it has a vertex-transitive split metacyclic automorphism group. We then prove that for any odd prime p and integer ℓ≥4, there exist weak metacirculants of order pℓ which are Cayley graphs but not Cayley graphs of any metacyclic group; this answers a question in Li et al. (2013) [11] We construct such graphs explicitly by introducing a construction which is a generalization of generalized Petersen graphs. Finally, we determine all smallest possible metacirculants of odd prime power order which are Cayley graphs but not Cayley graphs of any metacyclic group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.