Abstract
We investigate the coherent propagation of dilute atomic Bose-Einstein condensates through irregularly shaped billiard geometries that are attached to uniform incoming and outgoing waveguides. Using the mean-field description based on the nonlinear Gross–Pitaevskii equation, we develop a diagrammatic theory for the self-consistent stationary scattering state of the interacting condensate, which is combined with the semiclassical representation of the single-particle Green function in terms of chaotic classical trajectories within the billiard. This analytical approach predicts a universal dephasing of weak localization in the presence of a small interaction strength between the atoms, which is found to be in good agreement with the numerically computed reflection and transmission probabilities of the propagating condensate. The numerical simulation of this quasi-stationary scattering process indicates that this interaction-induced dephasing mechanism may give rise to a signature of weak antilocalization, which we attribute to the influence of non-universal short-path contributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.