Abstract

We analyze the weak localization correction to the conductivity of a spinless two-leg ladder model in the limit of strong dephasing \tau_\phi << \tau_tr, paying particular attention to the presence of a magnetic field, which leads to an unconventional magnetoresistance behavior. We find that the magnetic field leads to three different effects: (i) negative magnetoresistance due to the regular weak localization correction (ii) effective decoupling of the two chains, leading to positive magnetoresistance and (iii) oscillations in the magnetoresistance originating from the nature of the low-energy collective excitations. All three effects can be observed depending on the parameter range, but it turns out that large magnetic fields always decouple the chains and thus lead to the curious effect of magnetic field enhanced localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.