Abstract

This paper studies the existence of invariant smooth Lagrangian graphs for Tonelli Hamiltonian systems with symmetries. In particular, we consider Tonelli Hamiltonians with n independent but not necessarily involutive constants of motion and obtain two theorems reminiscent of the Liouville-Arnold theorem. Moreover, we also obtain results on the structure of the configuration spaces of such systems that are reminiscent of results on the configuration space of completely integrable Tonelli Hamiltonians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.