Abstract

We study the imprints that theories of gravity beyond GR can leave on the lensing signal around line of sight directions that are predominantly halo-underdense (called troughs) and halo-overdense. To carry out our investigations, we consider the normal branch of DGP gravity, as well as a phenomenological variant thereof that directly modifies the lensing potential. The predictions of these models are obtained with N-body simulation and ray-tracing methods using the ECOSMOG and Ray-Ramses codes. We analyse the stacked lensing convergence profiles around the underdense and overdense lines of sight, which exhibit, respectively, a suppression and a boost w.r.t. the mean in the field of view. The modifications to gravity in these models strengthen the signal w.r.t. ΛCDM in a scale-independent way. We find that the size of this effect is the same for both underdense and overdense lines of sight, which implies that the density field along the overdense directions on the sky is not sufficiently evolved to trigger the suppression effects of the screening mechanism. These results are robust to variations in the minimum halo mass and redshift ranges used to identify the lines of sight, as well as to different line of sight aperture sizes and criteria for their underdensity and overdensity thresholds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.