Abstract

Using a coupling argument, we establish a general weak law of large numbers for functionals of binomial point processes in d-dimensional space, with a limit that depends explicitly on the (possibly nonuniform) density of the point process. The general result is applied to the minimal spanning tree, the k-nearest neighbors graph, the Voronoi graph and the sphere of influence graph. Functionals of interest include total edge length with arbitrary weighting, number of vertices of specified degree and number of components. We also obtain weak laws of large numbers functionals of marked point processes, including statistics of Boolean models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.