Abstract

Abstract: The weak interactions between epinephrine and thymine were investigated by combining the 6-311+G(d,p) basis set with the M06-2X method based on density functional theory. Results suggest that epinephrine and thymine form 22 steady geometries through weak interactions, which primarily contain hydrogen bonds and π–π stacking. Hydrogen bonding is the main character. In addition, the interaction energies range from −20.98 kJ•mol−1 to −63.14 kJ•mol−1 with the basis set superposition error correction, which are in line with the energy range of the hydrogen bond. Geometrical parameters, frequency analysis, natural bond orbital (NBO) analysis, atoms-in-molecules (AIM) analysis, and reduced density gradient (RDG) analysis were also used to analyze and verify hydrogen bond formation. Most of the hydrogen bonds in optimized structures of the epinephrine–thymine complex are closed-shell interaction and electrostatic dominant, whereas N•••H–N, which exist in geometries 3, 4, 5, and 14, are interacting between the closed-shell and shared-shell. N-H…N is almost linear, which is more conducive to the study of the role of hydrogen bonds in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.