Abstract

Poly(vinylidene fluoride) (PVDF)-based solid electrolytes with a Li salt-polymer-little residual solvent configuration are promising candidates for solid-state batteries. Herein, we clarify the microstructure of PVDF-based composite electrolyte at the atomic level and demonstrate that the Li+-interaction environment determines both interfacial stability and ion-transport capability. The polymer works as a "solid diluent" and the filler realizes a uniform solvent distribution. We propose a universal strategy of constructing a weak-interaction environment by replacing the conventional N,N-dimethylformamide (DMF) solvent with the designed 2,2,2-trifluoroacetamide (TFA). The lower Li+ binding energy of TFA forms abundant aggregates to generate inorganic-rich interphases for interfacial compatibility. The weaker interactions of TFA with PVDF and filler achieve high ionic conductivity (7.0 × 10-4 S cm-1) of the electrolyte. The solid-state Li||LiNi0.8Co0.1Mn0.1O2 cells stably cycle 4900 and 3000 times with cutoff voltages of 4.3 and 4.5 V, respectively, as well as deliver superior stability at -20 to 45 °C and a high energy density of 300 Wh kg-1 in pouch cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call