Abstract

Let Δ = Δ 1 × … × Δ d ⊆ R n \Delta =\Delta _1\times \ldots \times \Delta _d\subseteq \mathbb {R}^n , where R n = R n 1 × ⋯ × R n d \mathbb {R}^n=\mathbb {R}^{n_1}\times \cdots \times \mathbb {R}^{n_d} with each Δ i ⊆ R n i \Delta _i\subseteq \mathbb {R}^{n_i} a non-degenerate simplex of n i n_i points. We prove that any set S ⊆ R n S\subseteq \mathbb {R}^n , with n = n 1 + ⋯ + n d n=n_1+\cdots +n_d of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of the configuration Δ \Delta . In particular any such set S ⊆ R 2 d S\subseteq \mathbb {R}^{2d} contains a d d -dimensional cube of side length λ \lambda , for all λ ≥ λ 0 ( S ) \lambda \geq \lambda _0(S) . We also prove analogous results with the underlying space being the integer lattice. The proof is based on a weak hypergraph regularity lemma and an associated counting lemma developed in the context of Euclidean spaces and the integer lattice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call