Abstract

A series of monohaloanilinium halides exhibiting weak halogen bonding (XB) has been prepared and characterized by 35Cl, 81Br, and 127I solid-state nuclear magnetic resonance (SSNMR) spectroscopy in magnetic fields of up to 21.1 T. The quadrupolar and chemical shift (CS) tensor parameters for halide ions (Cl–, Br–, I–) which act as electron density donors in the halogen bonds of these compounds are measured to provide insight into the possible relationship between halogen bonding and NMR observables. The NMR data for certain series of related compounds are strongly indicative of when such compounds pack in the same space group, thus providing practical structural information. Careful interpretation of the NMR data in the context of novel and previously available X-ray crystallographic data, and new gauge-including projector-augmented-wave density functional theory (GIPAW DFT) calculations has revealed several notable trends. When a series of related compounds pack in the same space group, it has been possible to interpret trends in the NMR data in terms of the strength of the halogen bond. For example, in isostructural series, the halide quadrupolar coupling constant was found to increase as the halogen bond weakens. In the case of a series of haloanilinium bromides, the 81Br isotropic chemical shift and CS tensor span both decrease as the bromide–halogen XB is weakened. These trends were reproduced using both GIPAW DFT and cluster-model calculations of the bromide ion magnetic shielding tensor. Such trends are particularly exciting given the well-known role that NMR has played historically in the characterization of hydrogen bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call