Abstract

The 4+1 formalism in general relativity (GR) prescribes field equations for the spacetime metric γμνx,τ which is local in the spacetime coordinates x and evolves according to an external “worldtime” τ. This formalism extends to GR the Stueckelberg Horwitz Piron (SHP) framework, developed to address the various issues known as the problem of time as they appear in electrodynamics. SHP field theories exhibit a formal 5D symmetry on (x,τ) that is strategically broken to 4+1 representations of the Lorentz group, resulting in a manifestly covariant canonical formalism describing the τ-evolution of spacetime structures as an initial value problem. Einstein equations for γμνx,τ are found by constructing a 5D pseudo-manifold (combining 4D geometry and τ-dynamics) and performing the natural foliation under broken 5D symmetry. This paper discusses weak gravitation in the 4+1 formalism, demonstrating the natural decomposition of the field equations into first-order evolution equations for the unconstrained 4D metric, and the propagation of constraints associated with the Bianchi identity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call