Abstract

Human activities facilitate long-distance dispersal of insects beyond their native range. In particular, the transportation of live plants offers diffusion opportunities for some insects with weak flight abilities. The increase in urban afforestation also help insect reside in urban habitats. The flower thrips, Frankliniella intonsa, is a widespread pest that causes serious damage to many economically important plants. Human activities are likely to facilitate the dispersal of this pest, however, the population genetic structure of this pest remains unclear. Herein, high-throughput sequencing was used to obtain 149 whole mitochondrial genomes of flower thrips from 28 geographic populations in China. Population genetic analyses, phylogenetic reconstruction, and inference of demographic history were then performed. A weak genetic structure was found among all populations across large geographic distance in China, in which five mitochondrial haplotype lineages were resolved. One of the lineages was identified to be shared among most samples collected from central city areas, which may be derived from the surrounding areas. Demographic history analyses suggested a recent population expansion of F. intonsa. Overall, the present population genetic structure of flower thrips in China may be promoted by human-mediated urban afforestation across the country.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call