Abstract

In this work, we develop a weak Galerkin method for the three-field Biot's consolidation model. The key idea is to consider the total pressure variable. We employ the stable pair of weak Galerkin finite elements to discretize the displacement and total pressure, and use totally discontinuous weak functions to approximate pressure in a semi-discrete scheme. Then, we give the fully discrete scheme based on the backward Euler method in time. Furthermore, we prove the well-posedness of the numerical schemes and derive the optimal error estimates for three variables in their nature norms. Our theoretical results are independent of the Lamé constant λ and the storage coefficient c0. Finally, some experiments that employ different polynomial degrees and polygonal meshes are presented to demonstrate the efficiency and stability of the weak Galerkin method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.