Abstract
We show that the amalgamated free product of weakly exact von Neumann algebras is weakly exact. This is done by using a universal property of Toeplitz-Pimsner algebras and a locally convex topology on bimodules of von Neumann algebras, which is used to characterize weakly exact von Neumann algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.