Abstract

The effects of spatiotemporal disorder, i.e., both the noise and quenched disorder, on the dynamics of active particles in two dimensions are investigated. We demonstrate that within the tailored parameter regime, nonergodic superdiffusion and nonergodic subdiffusion occur in the system, identified by the observable quantities (the mean squared displacement and ergodicity-breaking parameter) averaged over both the noise and realizations of quenched disorder. Their origins are attributed to the competition effects between the neighbor alignment and spatiotemporal disorder on the collective motion of active particles. These results may be helpful for further understanding the nonequilibrium transport process of active particles, as well as for detection of the transport of self-propelled particles in complex and crowded environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call