Abstract

Abstract For modern Earth, the annual-mean equatorial winds in the upper troposphere are flowing from east to west (i.e., easterly winds). This is mainly due to the deceleration effect of the seasonal cross-equatorial Hadley cells, against the relatively weaker acceleration effect of coupled Rossby and Kelvin waves excited from tropical convection and latent heat release. In this work, we examine the evolution of equatorial winds during the past 250 million years using one global Earth system model, the Community Earth System Model version 1.2.2 (CESM1.2.2). Three climatic factors different from the modern Earth—solar constant, atmospheric CO2 concentration, and land–sea configuration—are considered in the simulations. We find that the upper-tropospheric equatorial winds change sign to westerly flows (called equatorial superrotation) in certain eras, such as 250–230 and 150–50 Ma. The strength of the superrotation is below 4 m s−1, comparable to the magnitude of the present-day easterly winds. In general, this phenomenon occurs in a warmer climate within which the tropical atmospheric circulation shifts upward in altitude, stationary and/or transient eddies are relatively stronger, and/or the Hadley cells are relatively weaker, which in turn are due to the changes of the three factors, especially CO2 concentration and land–sea configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call