Abstract

Weak drift of an infinitely divisible distribution μ on ℝ d is defined by analogy with weak mean; properties and applications of weak drift are given. When μ has no Gaussian part, the weak drift of μ equals the minus of the weak mean of the inversion μ′ of μ. Applying the concepts of having weak drift 0 and of having weak drift 0 absolutely, the ranges, the absolute ranges, and the limit of the ranges of iterations are described for some stochastic integral mappings. For Lévy processes, the concepts of weak mean and weak drift are helpful in giving necessary and sufficient conditions for the weak law of large numbers and for the weak version of Shtatland’s theorem on the behavior near t=0; those conditions are obtained from each other through inversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.