Abstract
Bismuth telluride-based materials are the most celebrated thermoelectric (TE) materials near room temperature. However, for the n-type bismuth telluride-based materials, the traditional powder metallurgy (PM) method, such as grinding and ball milling, can induce strong donor-like effect. The strong donor-like effect boosts the carrier concentration [Formula: see text] and the carrier thermal conductivity [Formula: see text], leading to the deterioration of both electrical and thermal performance. Herein, the basal deformation (BD) has been performed in the n-type Bi2Te3-based materials to introduce weak donor-like effect. The BD crystalline bulks were obtained through sintering the stacked crystals, which had been heavily deformed on the (00[Formula: see text] plane. The BD process optimizes the carrier concentration [Formula: see text] and improves the power factor (PF). Meanwhile, the lattice thermal conductivity [Formula: see text] is suppressed due to the enhanced grain boundary scattering. Consequently, a peak ZT of 1.0 at 380 K has been achieved in Bi2Te[Formula: see text]Se[Formula: see text], which is 24% and 30% higher than that of the original zone-melting (ZM) ingot and the polycrystalline sample by PM. This study sheds light on the further TE performance enhancement of bismuth telluride-based materials via introducing the weak donor-like effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.