Abstract
We investigate the global existence of weak solutions to a free boundary problem governing the evolution of finitely extensible bead-spring chains in dilute polymers. The free boundary in the present context is defined with regard to a density threshold of $ \rho = 1, $ below which the fluid is modeled as compressible and above which the fluid is modeled as incompressible. The present article focuses on the physically relevant case in which the viscosity coefficients present in the system depend on the polymer number density, extending the earlier work [8]. We construct the weak solutions of the free boundary problem by performing the asymptotic limit as the adiabatic exponent $ \gamma $ goes to $ \infty $ for the macroscopic model introduced by Feireisl, Lu and Süli in [10] (see also [6]). The weak sequential stability of the family of dissipative (finite energy) weak solutions to the free boundary problem is also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.