Abstract
We study models for a directed polymer in a random environment (DPRE) in which the polymer traverses a hierarchical diamond graph and the random environment is defined through random variables attached to the vertices. For these models, we prove a distributional limit theorem for the partition function in a limiting regime wherein the system grows as the coupling of the polymer to the random environment is appropriately attenuated. The sequence of diamond graphs is determined by a choice of a branching number b∈{2,3,…} and segmenting number s∈{2,3,…}, and our focus is on the critical case of the model where b=s. This extends recent work in the critical case of analogous models with disorder variables placed at the edges of the graphs rather than the vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.