Abstract

Let R be a ring, S a strictly ordered monoid and ω: S → End(R) a monoid homomorphism. The skew generalized power series ring R[[S, ω]] is a common generalization of skew polynomial rings, skew power series rings, skew Laurent polynomial rings, skew group rings, and Mal'cev-Neumann Laurent series rings. In the case where S is positively ordered we give sufficient and necessary conditions for the skew generalized power series ring R[[S, ω]] to have weak dimension less than or equal to one. In particular, for such an S we show that the ring R[[S, ω]] is right duo of weak dimension at most one precisely when the lattice of right ideals of the ring R[[S, ω]] is distributive and ω(s) is injective for every s ∈ S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.