Abstract
The article reviews the basics of the variable precision rough set and the Bayesian approaches to data dependencies detection and analysis. The variable precision rough set and the Bayesian rough set theories are extensions of the rough set theory. They are focused on the recognition and modelling of set overlap-based, also referred to as probabilistic, relationships between sets. The set-overlap relationships are used to construct approximations of undefinable sets. The primary application of the approach is to analysis of weak data co-occurrence-based dependencies in probabilistic decision tables learned from data. The probabilistic decision tables are derived from data to represent the inter-data item connections, typically for the purposes of their analysis or data value prediction. The theory is illustrated with a comprehensive application example illustrating utilization of probabilistic decision tables to face image classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.