Abstract

We study the Lambda_c decay process to pi^+ and the meson-baryon final state for the analysis of Lambda resonances. Considering the Cabibbo-Kobayashi-Maskawa matrix, color suppression, diquark correlation and the kinematical condition, we show that the final meson-baryon state should be in a pure I=0 combination, when the meson-baryon invariant mass is small. Because the I=1 contamination usually makes it difficult to analyze Lambda resonances directly from experiments, the Lambda_c decay is an ideal process to study Lambda resonances. Calculating the final state interaction by chiral unitary approaches, we find that the piSigma invariant mass distributions have the same peak structure in the all charge combination of the piSigma states related to the higher pole of the two poles of the Lambda(1405). Furthermore, we obtain a clear the Lambda(1670) peak structure in the KbarN and etaLambda spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.