Abstract
AbstractWe define the convexity rank of a set of points to be the portion of mutually visible pairs of points out of the total number of pairs. Based on this definition of weak convexity, we introduce a spectral method that decomposes a given shape into weakly convex regions. The decomposition is applied without explicitly measuring the convexity rank. The method merely amounts to a spectral clustering of a matrix representing the all‐pairs line of sight. Our method can be directly applied on an oriented point cloud and does not require any topological information, nor explicit concavity or convexity measures. We demonstrate the efficiency of our algorithm on a large number of examples and compare them qualitatively with competitive approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.