Abstract

Limit theory with stochastic integrals plays a major role in time series econometrics. In earlier contributions on weak convergence to stochastic integrals, the literature commonly uses martingale and semi-martingale structures. Liang, Phillips, Wang, and Wang (2016) (see also Wang (2015), Chap. 4.5) currently extended weak convergence to stochastic integrals by allowing for a linear process or a α-mixing sequence in innovations. While these martingale, linear process and α-mixing structures have wide relevance, they are not sufficiently general to cover many econometric applications that have endogeneity and nonlinearity. This paper provides new conditions for weak convergence to stochastic integrals. Our frameworks allow for long memory processes, causal processes, and near-epoch dependence in innovations, which have applications in a wide range of econometric areas such as TAR, bilinear, and other nonlinear models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.