Abstract

This article is devoted to the analysis of the weak rates of convergence of schemes introduced by the authors in a recent work, for the temporal discretization of the one-dimensional stochastic Allen–Cahn equation driven by space-time white noise. The schemes are based on splitting strategies and are explicit. We prove that they have a weak rate of convergence equal to $$\frac{1}{2}$$ , like in the more standard case of SPDEs with globally Lipschitz continuous nonlinearity. To deal with the polynomial growth of the nonlinearity, several new estimates and techniques are used. In particular, new regularity results for solutions of related infinite dimensional Kolmogorov equations are established. Our contribution is the first one in the literature concerning weak convergence rates for parabolic semilinear SPDEs with non globally Lipschitz nonlinearities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.