Abstract
AbstractFor a locally compact group G, let B(G) denote its Fourier–Stieltjes algebra. Any continuous, piecewise affine map α: Y ⊂ H → G induces a completely bounded algebra homomorphism jα: B(G) → B(H) [14, 15] and we prove that jα is w* – w* continuous if and only if α is an open map. This extends one of the main results in [3], due to M.B. Bekka, E. Kaniuth, A.T. Lau and G. Schlichting. Several classical theorems regarding isomorphisms and extensions of homomorphisms on group algebras of abelian groups are extended to the setting of Fourier–Stieltjes algebras of amenable groups. As applications, when G is amenable we provide complete characterizations of those maps between Fourier–Stieltjes algebras that are either associated to a piecewise affine mapping, or are completely bounded and w* – w* continuous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.