Abstract

This chapter describes weak continuity and compactness of nonlinear operators. It is known that the properties of weak continuity and compactness of a nonlinear operator F: X → Y, where X and Y are Banach spaces, play a central role in the study of nonlinear equations. Relations between these properties and the behavior of the derivative, F′, of F have been investigated for some time. The chapter introduces a topology on B(X, Y) which is much weaker than the norm topology. The chapter establishes relations between the mapping F′: X → B(X, Y), where F′ is the (linear) Gateaux derivative, and the properties of compactness and weak sequential continuity of F.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.